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Long-Range Pair Correlations 
in Dilute Gases 
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It is shown that there exist nonequilibrium pair correlations which are not 
described by the Boltzmann transport equation but which persist even ina 
dilute gas. 

KEY W O R D S :  Boltzmann transport equation; dilute gases; nonequi- 
librium pair correlations. 

The Boltzmann equation, which is used to describe the nonequilibrium 
behavior of  dilute gases, is generally believed to become exact for very dilute 
gases. There are three possible meanings of this assertion: 

(A) All physically measurable effects in a dilute gas are described 
correctly by the Boltzmann equation; in particular, the pair correlations 
(which are ignored) really do become vanishingly small. 

(B) The Boltzmann equation for the one-particle reduced distribution 
function describes correctly all physical measurements of  sums of one-particle 
quantities in a dilute gas, but possibly not other measurements. 

(C) The Boltzmann equation becomes exact in the extreme "Bol t zmann-  
Grad limit," (1~ that is 

N / V - +  0% Nro3/V-+ 0, Nro2/V = finite constant 

where r0 is the range of  the force between two particles. 

1 School of Mathematics, University of New South Wales, Kensington, N.S.W., Aus- 
tralia. 

385  

�9 1975 Plenum Publishing Corporat ion,  227 West 17th Street, New York ,  N.Y.  10011.:No par t  o f  this pub-  
Iication may  be reproduced,  stored in a retrieval system, or  transmitted, in any form or by any means,  electronic, 
mechanical,  photocopying,  microfilming, recording, or  otherwise, without written permission o f  the publisher. 



386 John M. Blatt and Alex H. Opie 

In this note we point  out that  (A) is certainly incorrect;  we make no 
statement about  (B) or (C), but note that our effects approach zero in the 
Bo l t zmann-Grad  limit. 

Referring to the preceding paper (Ref. 3 ; equations from that paper are 
preceded by a Roman  numeral  I) we obtain the dilute gas limit of  equations 
(I.4) and (1.5) by integrating the Poisson bracket terms over the interaction 
region [where V12 = V(r~)  is nonzero] and then letting the range of  the 
interaction become small. 

This limit turns out to be somewhat  intricate, for  the following reason: 
Immediately after a (1, 2) collision, the two particles separate along the paths 

r~(t) = r~(tc) + (pJm)(t - to), i = I, 2 (1) 

where tc is the collision instant, and p~ is the momentum of  particle i after the 
collision. In the low density limit, we may ignore molecular-size effects, so that 

r~(6) = r2(6) (2) 

i.e., the two particles start at t = t~ from the same point. One then obtains 
f rom (1) by subtraction 

r2(t) -- r l ( t )  = [(t -- tc)/m][p2(t ) -- 01(0] (3) 

Relation (3) continues to hold until one of  the particles collides with a third 
particle, i.e., it persists on average during times of  the order  of  a mean free 
time between collisions. 

Relation (3) has extremely strong consequences for the properties of  
~(1, 2) in 

f2(1, 2) = f~(1)fl(2) + ~r(1, 2) (4) 

The function (r(1, 2) = a(rl ,  p~, r2, P2; t) must be written as a sum of  two 
parts 

~(1, 2) = ~p(1, 2) + ~m(1, 2) (5) 

where %(1, 2) describes the " p r i m a r y "  pair correlation, which obeys (3), and 
~rm(1 , 2) is the residual pair correlation remaining after multiple collisions. 
There is no need to separate Crm(1, 2) into terms classified by the precise 
number  of  collisions suffered by 1 and/or  2 between t~ and t; e~(1, 2) describes 
the sum of  all these terms at time t. The pair correlation ep(1, 2) would also be 
found in an exact theory which retains correlations of  all orders. On the other 
hand, am(1 , 2) would appear  in such a theory as an integral over triplet and 
higher correlations, not  as a direct pair correlation at all. 

The function crm(rl, px, r2, P2, t) is a smooth function of  all its variables; 
but  % is far f rom smooth.  Rather,  

%(r~, p~, r2, P2, t) = 0 unless rz - r~ is parallel to p~ - p1 (6) 
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This follows from (3) since (t - tc)/m is a positive scalar multiplier. Unless 
the integral of  % vanishes altogether, (6) implies a twofold delta-function 
behavior for %; we introduce R = �89 + r2), P = Pl + P2, r = r2 - r l ,  
P = �89 - P0, and we let the polar angles of  r be 0r, r  those of  p be 
0p, Cp. Then % in the dilute gas limit has the form 

~p(R, P, r, 0T, Cr, P, 6 ,  r t) 

= w(R, P, r, Or, 4r, P, t)(1/rz) 3(cos Or -- COS 0~) b(r - Cv) (7) 

where ~o is defined by (7) and is a function of the indicated variables. 
In order to go to the low-density limit of  equations (I.4) and (I.5), 

it is essential to introduce (5) and (7) for ~(1, 2). One then obtains 
coupled integrodifferential equations for the three functions f l ( r l ,  pz, t); 
o~(R, P, r, 0T, Cr, P, t), and am(r~, p~, r2, P2, t). The equations are rather 
lengthy, and we shall confine ourselves here to enumerating some of their 
consequences. 

(1) In the equilibrium state of the gas, w = a m = 0. The equilibrium pair 
correlations (which do exist) are confined to the interaction region, r12 < r0, 
which region is being ignored here. In the integrodifferential equations, the 
way this happens is that the source term for &o/~t cancels to zero if f l  has the 
equilibrium form. The cancellation in question is the same which, in the 
Boltzmann equation, leads to stability of the Maxwell-Boltzmann distribution 
against collisions. 

(2) Away from equilibrium, in general, neither ~o nor am vanishes. That is, 
there exist nonequilibrium pair correlations, not included in the Bohzmann 
equation. 

(3) These nonequilibrium pair correlations include extremely strong, 
delta-function-like, correlations between the position and momentum vectors 
of the two particles; see Eq. (7). As a consequence, it is neither exactly true, 
nor even a good first approximation, to assume that the momentum dependence 
is that o f  a Maxwel l  distribution. The Maxwell distribution for the two particle 
projection f2(1, 2) gives the momentum dependence 

exp[-( f i /Zm)(p~ 2 + p22)] = exp[-(fdP2/4m) - (fip2/m)] (8) 

This does not allow for any directional correlation between the vectors 
P = �89 - Pl) and r = r2 - r~, and is therefore quite insufficient if terms of 
type % [Eq. (7)] are dominant - -as  they are. This is, in our opinion, a major 
cause of the inadequacies of  the Ansatz (I.8) of Enskog, (~) of the Rice-Allnatt 
theory, (5) and of the many other attempts to obtain generalizations of the 
Boltzmann equation. All these approaches assume that correlations between 
positions and momenta  vanish. 
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(4) The nonequilibrium pair correlations have a range, in the variable 
r = [r2 - rl[, of  the order of  the mean path A. Beyond this, they go to zero 
in an exponential fashion. The effect o f  this is that  the integral 

f dar f d3p c~(R, P, r, p, t) 

converges as it stands. There is no divergence associated with an infinite region 
o f  integration, since the integrand vanishes exponentially for large r. It is likely, 
therefore, that similar integrals, which arise in the theory o f  the density 
dependence of  transport  coefficients, will also be convergent automatically, 
thereby solving a divergence difficuIty of  the usuaI theories pointed out  by 
Cohen, (6~ without any need to re-sum a series o f  diagrams. 

(5) The existence o f  a long-range, singular pair correlation away from 
equilibrium is also implicit in the work of  Kritz et al. ~7~ and Pomeau.  (8~ 
However,  their theory fails to give the exponential decay with increasing r!2, 
and therefore not  only disagrees with our  results, but  also violates the finite- 
range property described in the preceding paragraph.  
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